
CSCC43 UTSC
Assignment 1

50 points

Due Date: June 8, 11:59pm

Learning Goals

By the end of this assignment, you should be able to:

1. Read a new relational schema, and determine whether a particular instance is valid with

respect to that schema,

2. Apply the individual techniques for writing relational algebra queries and integrity constraints

that we learned in class,

3. Combine the individual techniques to solve complex problems, and

4. identify problems that cannot be solved using relational algebra.

These skills we leave you well prepared to learn SQL.

Instructions

There are two schemas in this assignment and queries related to those schemas. You need to

answer all the questions.

• Schema 1 has 5 queries (40%) and 2 integrity constraint (10%).

• Schema 2 has 5 queries (50%) and no integrity constraint.

Common Instructions for both schema:

Write the queries below in relational algebra. There are several variations on relational algebra,

and different notations for the operations. You must use the same notation as we have used in

class and on the slides. You may use assignment, and the operators we have used in class: 𝜋,

σ, ⨝, ⨝ 𝜃, ×, ∩, ∪, −, ρ. Assume that all relations are sets (not bags), as we have done in class,

and do not use any of the extended relational algebra operations from Chapter 5 of the

textbook (for example, do not use the division operator). Some additional points to keep in mind:

• Do not make any assumptions about the data that are not enforced by the original

constraints given above, including the ones written in English. Your queries should work

for any database that satisfies those constraints.

• Assume that every tuple has a value for every attribute. For those of you who know some

SQL, in other words, there are no null values.

• Remember that the condition on a select operation may only examine the values of the

attributes in one tuple, not whole columns. In other words, to use a value (other than a

literal value such as 100 or “Adele”), you must get that value into the tuples that your select

will examine.

• The condition on a select operation can use comparison operators (such as ≤ and ≥) and

Boolean operators (∨, ∧ and ¬). Simple arithmetic is also okay,

 e.g., attribute1≤ attribute2 + 5000.

• Some relations in our schema have a date-time attribute. You may use comparison

operators on such values. You may refer to the year component of a date-time attribute

d using the notation d.year.

• You are encouraged to use assignment to define intermediate results.

• It’s a good idea to add commentary explaining what you’re doing. This way, even if your

final answer is not completely correct, you may receive part marks.

• The order of the columns in the result does not matter.

• When asked for a maximum or minimum, if there are ties, report all of them.

At least one of the queries cannot be expressed in the language that you are using. In those

cases, simply write “cannot be expressed”.

Schema 1

Rather than store pictures and videos themselves, our database will store URL references to their

locations in the cloud.

Relations

• User (uid, name, website, about, email, phone, photo)

A tuple in this relation represents an Instagram user. 𝑢𝑖𝑑 is the string identifier selected by the
user. 𝑛𝑎𝑚𝑒, 𝑤𝑒𝑏𝑠𝑖𝑡𝑒, 𝑎𝑏𝑜𝑢𝑡, 𝑒𝑚𝑎𝑖𝑙, and 𝑝ℎ𝑜𝑛𝑒 are information about this user. 𝑝ℎ𝑜𝑡𝑜 is the url
of the profile photo of this user.

• Follows (follower, followed, start)

A tuple in this relation represents the fact that the user with identifier 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 follows the user

with the identifier 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑, beginning at date-time 𝑠𝑡𝑎𝑟𝑡.

• Post (pid, uid, when, location, caption)

A tuple in this relation represents a post added by a user to their profile. 𝑝𝑖𝑑 is the post

identification number. 𝑢𝑖𝑑 is the identification number of the user who posted this post, which

we will call the poster. 𝑤ℎ𝑒𝑛 is the date-time when this post was posted by the poster. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

is the location selected by the poster for this post. 𝑐𝑎𝑝𝑡𝑖𝑜𝑛 is the text description given to this

post by the poster. Each post can have at most one caption.

• PIncludes (pid, url)

A tuple in this relation represents the fact that the photo or video stored at location 𝑢𝑟𝑙 is

included in post 𝑝𝑖𝑑.

• Hashtag (pid, tag)

A tuple in this relation represents the fact that the caption of post 𝑝𝑖𝑑 includes the hashtag

𝑡𝑎𝑔.

• Likes (liker, pid, when)

A tuple in this relation represents the fact that user 𝑙𝑖𝑘𝑒𝑟 has liked the post 𝑝𝑖𝑑 at date-time

𝑤ℎ𝑒𝑛.

• Comment (pid, commenter, when, text)

A tuple in this relation represents the fact that user 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑒𝑟 left the comment 𝑡𝑒𝑥𝑡 for post

𝑝𝑖𝑑 at date-time 𝑤ℎ𝑒𝑛.

• Story (sid, uid, when, current)

A tuple in this tuple represents a story created by a user. 𝑠𝑖𝑑 is the identifier of the story, 𝑢𝑖𝑑 is

the user who created it, and 𝑤ℎ𝑒𝑛 is the date-time when they created it. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is true iff this

is the current story for this user.

• SIncludes (sid, url)

A tuple in this relation represents the fact that the photo or video stored at location 𝑢𝑟𝑙 is

included in story 𝑠𝑖𝑑.

• Saw (viewerid, sid, when)

A tuple in this relation represents the fact that viewer 𝑣𝑖𝑒𝑤𝑒𝑟𝑖𝑑 saw story 𝑠𝑖𝑑 at date-time

𝑤ℎ𝑒𝑛.

Integrity Constraint

• Follows[follower] ⊆ User[uid]

• Follows[followed] ⊆ User[uid]

• Post[uid] ⊆ User[uid]

• PIncludes[pid] ⊆ Post[pid]

• Hashtag[pid] ⊆ Post[pid]

• Likes[likerid] ⊆ User[uid]

• Likes[pid] ⊆ Post[pid]

• Comment[pid] ⊆ Post[pid]

• Comment[commenter] ⊆ User[uid]

• Story[uid] ⊆ User[uid]

• SIncludes[sid] ⊆ Story[sid]

• Saw[viewerid] ⊆ User[uid]

• Saw[sid] ⊆ Story[sid]

• 𝜎𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟=𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑𝐹𝑜𝑙𝑙𝑜𝑤𝑠 = ∅

• Story[current] ⊆ {“𝑦𝑒𝑠”, “𝑛𝑜”}

Warmup: Getting to know the schema

To get familiar with the schema, ask yourself questions like these (but don’t hand in your answers):

• What does this integrity constraint mean? 𝜎𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟=𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑𝐹𝑜𝑙𝑙𝑜𝑤𝑠 = ∅

• Would it be a good idea to define the Follows relation like this?

Follows (follower, followed, start)

• Can the database represent a single post that has multiple comments?

• Can the database represent multiple comments from the same user on one post?

• How does the schema allow any number of photos or videos to be included in one story,

but restrict the user to having only one profile photo?

• Can the database represent that a user likes the same post more than once? (If not, how

would one change the schema to allow this?)

• Can the database represent that a user makes two posts at the same time?

• Can the database represent that the same user makes the same comment on two different

posts?

• Can the database represent that the same picture is included in 2 stories?

Part 1: Queries (40% - 4 points each)

Note: The queries are not in order according of difficulty.

1. Find all the users who have never liked or viewed a post or story of a user that they do not

follow. Report their user id and “about” information. Put the information into a relation with

attributes “username” and “description”.

2. Find every hashtag that has been mentioned in at least three post captions on every day

of 2020. You may assume that there is at least one post on each day of a year.

3. Let’s say that a pair of users are “reciprocal followers” if they follow each other. For each

pair of reciprocal followers, find all of their “uncommon followers”: users who follow one

of them but not the other. Report one row for each of the pair’s uncommon follower. In it,

include the identifiers of the reciprocal followers, and the identifier, name and email of the

uncommon follower.

4. Find the user who has liked the most posts. Report the user’s id, name and email, and

the id of the posts they have liked. If there is a tie, report them all.

5. Let’s say a pair of users are “backscratchers” if they follow each other and like all of each

other’s posts. Report the user id of all users who follow some pair of backscratcher users.

Part 2: Additional Integrity Constraints (20% - 2.5 points each)

Express the following integrity constraints with the notation R=∅, where R is an expression of

relational algebra. You are welcome to define intermediate results with assignment and then use

them in an integrity constraint.

1. Each user can have at most one current story.

2. Every post must include at least one picture or one video and so must every story.

When writing your queries, do not assume that these additional integrity constraints hold, except

for the second one — it was described above as a constraint that holds.

Schema 2

For this problem we use the schema of the Health Network database. It includes the following

relations. Keys are underlined and each tuple is described.

• Clinic (clinicID, hName, hAddress, hCity)

A clinic including the 𝑐𝑙𝑖𝑛𝑖𝑐 𝐼𝐷, 𝑛𝑎𝑚𝑒, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 and 𝑐𝑖𝑡𝑦 of that clinic.

• Room (roomID, clinicID, rNumber, rSize)

A clinic room including the clinic ID, room number, and room capacity – the number of patients

it accommodates.

• Employee (employeeID, eFirstName, eLastName, eRole, eSalary, eAddress, eCity, eSIN)

An employee including their employee ID number, first and last names, role in the clinic (or

occupation type, such as physician, technician, etc.), salary, address, city, and Social

Insurance Number.

• Department (departmentID, clinicID, dName, dHead)

A department in a clinic including the clinic ID, the department ID, the name of the department,

and the employee ID of the head of the department.

• EmployeeDepartment (employeeID, departmentID, edStartDate, edEndDate)

The departments to which an employee belongs. An employee may work in more than one

department. This tuple contains the employee ID, the department ID, and the dates that they

started and finished employment in that department.

• Patient (patientID, pFirstName, pLastName, pSex, pOHIP, pOther, pDOB, pAddress,

pCity, pProvince, pCountry)

A patient in the clinic system including the patient ID, first name, last name, sex (M or F), OHIP

number, other form of payment if not on OHIP, date of birth, residence address including the

address, city, province, and country.

• PatientAppointment (patientID, departmentID, employeeID, paDate, paTime, paReason)

An appointment for a patient, including the department ID of the clinic department, the

employee ID of the person whom they are seeing (could be technician), the date, the time,

and the purpose of the visit.

• PatientRoomAssignment (patientID, roomID, prInDate, prOutDate, prPhysician)

A room that is assigned to a patient who needs to stay in the clinic - including the ID of the

patient and room, the date that they were admitted, the date that they left the clinic, and the

employee ID of their attending physician during their stay.

Integrity Constraint

• Room (clinicID) ⊆ Clinic (clinicID)

• Department (clinicID) ⊆ Clinic (clinicID)

• Department (dHead) ⊆ Employee (employeeID)

• EmployeeDepartment (departmentID) ⊆ Department (departmentID)

• PatientAppointment (patientID) ⊆ Patient(patientID)

• PatientAppointment (departmentID) ⊆ Department (departmentID)

• PatientAppointment (employeeID) ⊆ Employee (employeeID)

• PatientRoomAssignment (patientID) ⊆ Patient (patientID)

• PatientRoomAssignment (roomID) ⊆ Room (roomID)

Queries: (50% - 5 points each)

1. Find the clinic name and department name for all departments whose head is also head

of another department.

2. Find the first name and last name of all Physicians whose patients are never in the clinic

for less than 10 days.

(They must have had patients admitted in the clinic at some time.)

3. Find the first and last name of all patients who have exactly two physicians in the clinic’s

system.

(Note that physicians are specified in both appointments and room assignment.)

4. Find the clinic and department name for the department at which there were no

appointments from April 3, 2019 to April 8, 2019.

5. Find the clinic, room number, and patient first and last names of all semi-private (size = 2)

rooms which were occupied by female patients who were over 50 on May 13, 2019.

Style and formatting requirements

To make your algebra more readable, and to minimize errors, we are including these style and

formatting requirements:

• In your assignment statements, you must include names for all attributes in the

intermediate relation you are defining.

For example, write

𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝐺𝑟𝑎𝑑𝑒(𝑠𝐼𝐷, 𝑜𝐼𝐷, 𝑔𝑟𝑎𝑑𝑒) ∶=. ..

• Use meaningful names for intermediate relations and attributes, just as you would in a

program.

• If you want to include comments, put them before the algebra that they pertain to, not

after. Make them stand out from the algebra, for example by using a different font.

For example, this looks reasonable:–

Students who had very high grades in any offering of a csc

𝑐𝑜𝑢𝑟𝑠𝑒. 𝐻𝑖𝑔ℎ(𝑠𝐼𝐷) ∶= 𝜋𝑠𝐼𝐷𝜎𝑑𝑒𝑝𝑡=′𝑐𝑠𝑐′∧𝑔𝑟𝑎𝑑𝑒>95(𝑇𝑜𝑜𝑘 ⨝ 𝑂𝑓𝑓𝑒𝑟𝑖𝑛𝑔)

A modest portion of your mark will be for good style and formatting.

Submission Instructions:

Your assignment must be typed; handwritten assignments will not be marked. You may use any

word-processing software you like. Many academics use LaTeX. It produces beautifully typeset

text and handles mathematical notation well. If you would like to learn LaTeX, there are helpful

resources online.

Whatever you choose to use, you need to produce a final document in pdf format. You must

declare your team (whether it is a team of one or two students) and hand in your work

electronically using the MarkUs online system.

Well before the due date, you should declare your team and try submitting with MarkUs.

For this assignment, hand in just one file: A1.pdf.

If you are working in a pair, only one of you should hand it in. Check that you have submitted the

correct version of your file by downloading it from MarkUs; new files will not be accepted after the

due date.

