
1

Assignment 1: Sample Solutions
Note that there are multiple correct answers to all of these questions.

Schema 1

1. Find all the users who have never liked or viewed a post or story of a user that they do not follow.
Report their user id and “about” information. Put the information into a relation with attributes
“username” and “description”.

Solution:

– all possible pairs of users

AllUserPairs(user1,user2) := ΠU1.uid,U2.uid σU1.uid>U2.uid[ρU1Users × ρU2Users]

– pairs where user1 does not follow user2

NotFollowed(user1,user2) := AllUserPairs − ρ(user1,user2)(Π Follower,Followed Follows)

– users who liked post of someone they don’t follow

LikedStrangerPost(user) := Πuser1σuser2=uidNotFollowed × (Likes ⋈ Post)

– users who viewed story of someone they do not follow

V iewedStrangerStory(user) := Πuser1

σNotFollowed.user1=Saw.viewerid∧NotFollowed.user2=Story.uid∧Saw.sid=Story.sid(Saw×Story×NotFollowed)

– users who did any of the 2 things

AnyStranger(uid) := LikedStrangerPost ∪ ViewedStrangerStory

– users who did NOT do either of these two things

Candidates(uid) := ΠuidUsers − AnyStranger

– final (join and rename to get fields we need)

Final(name,description) := ρ(name,description)(Πname,about(Candidates ⋈ Users)

2. Find every hashtag that has been mentioned in at least three post captions on every day of 2020.

You may assume that there is at least one post on each day of a year.

Solution:

– find posts in 2020, keep day and pid

2020posts(day,pid) := Π when.day,pid σwhen.year=“2020”Post

– find all days in 2020

2020days(day) := Π when.day σwhen.year=“2020”Post

– find hashtags with their posts from 2020

2

HT2020(day,tag,pid) := 2020posts ⋈ Hashtag

– find those mentioned on 3 times on same day ThreeMentions(day,tag) :=

Π HT1.day,HT1.tag σ(HT1.tag=HT2.tag=HT3.tag)∧(HT1.day=HT2.day=HT3.day)∧(HT1.pid>HT2.pid>HT3.pid) [(ρHT1HT2020) ×

(ρHT2HT2020) × (ρHT3HT2020)]

– make table of all days in 2020 and all tags

AllDaysTags(day,tag) := 2020days × ΠtagHashtag

– find day,tag combos that did not have 3 mentions

NotMentionedThrice(day,tag) := AllDaysTags − ThreeMentions

– set difference on tags only to find final solution

Final(tag) := ΠtagAllDaysTags − ΠtagNotMentionedThrice

3. Let’s say that a pair of users are “reciprocal followers” if they follow each other. For each pair of
reciprocal followers, find all of their “uncommon followers”: users who follow one of them but
not the other. Report one row for each of the pair’s uncommon follower.
In it, include the identifiers of the reciprocal followers, and the identifier, name and
email of the uncommon follower.

Solution:

ReciprocalFollowers(user1,user2) :=

 Π F1.follower,F2.followerσF1.follower=F2.followed∧ F1.followed=F2.follower∧ F1.follower<F2.follower

 [(ρF1Follows) × (ρF2Follows)]

– find sets of followers of each of the two users

FollowsUser1(user1,user2,follower) :=

 Π RF.user1,RF.user2,F.followerσRF.user1=F.followed [(ρRFReciprocalFollowers) × (ρFFollows)]

FollowsUser2(user1,user2,follower) :=

 Π RF.user1,RF.user2,F.followerσRF.user2=F.followed [(ρRFReciprocalFollowers) × (ρFFollows)]

FollowsBoth(user1,user2,follower) := FollowsUser1 ∩ FollowsUser2

FollowsEither(user1,user2,follower) := FollowsUser1 ∪ FollowsUser2

FollowsOne(user1,user2,follower) := FollowsEither – FollowsBoth

Solution(user1,user2,name,email) := Π user1,user2,name,emailσfollower=uid[FollowsOne × User]

4. Find the user who has liked the most posts. Report the user’s id, name and email, and the id of

the posts they have liked. If there is a tie, report them all.

3

 Solution: Not possible with relational algebra alone.

5. Let’s say a pair of users are “backscratchers” if they follow each other and like all of

each others’ posts.Report the user id of all users who follow some pair of backscratcher users.

Solution:

– find reciprocal follower pairs

ReciprocalFollowers(user1,user2) :=

 Π F1.follower,F2.follower σ F1.follower=F2.followed∧F1.followed=F2.follower∧F1.follower<F2.follower [ρF1 Follows × ρF2 Follows]

– find all posts by user1

AllPostsU1(pid,user1,user2) := Π pid,user1,user2σuid=user1[ReciprocalFollowers × Post]

– find posts by user1 liked by user2

LikedU1Posts(pid,user1,user2) :=

 Π pid,user1,user2σ(uid=user1)∧(liker=user2)∧(Post.pid=Likes.pid) [ReciprocalFollowers × Post × Likes]

– posts by user1 not liked by user2

NotLikedU1Posts(pid,user1,user2) := AllPostsU1 − LikedPosts

– pairs where user1 doesn’t like ALL of user2 posts

NotReciprocalLikerU1(user1,user2) := Πuser1,user2NotLikedU1Posts

– now do most of this again to find pairs where user2 doesn’t like ALL of user1 posts

– find all posts by user2

AllPostsU2(pid,user1,user2) := Πpid,user1,user2σuid=user2[ReciprocalFollowers × Post]

– find posts by user2 liked by user1

LikedU1Posts(pid,user1,user2) :=

 Π pid,user1,user2σ(uid=user2)∧(liker=user1)∧(Post.pid=Likes.pid) [ReciprocalFollowers × Post × Likes]

– posts by user2 not liked by user1

NotLikedU2Posts(pid,user1,user2 := AllPostsU2 − LikedU2Posts

– pairs where user2 doesn’t like ALL of user1 posts

NotReciprocalLikerU2(user1,user2) := Πuser1,user2 NotLikedU2Posts

– Backscratchers are all Reciprocal followers once re remove the NotReciprocalLikers in both

– directions

Backscratchers(user1,user2) := ReciprocalFollowers−NotReciprocalLikerU1−NotReciprocalLikerU2

4

– Final (join Follows with Backscratchers)

Final(user) := ΠF1.follower σ(F1.Follower=F2.Follower)∧(F1.Followed=Backscratchers.user1)∧(F2.Followed=Backscratchers.user2)

 [ρF1Follows × ρF2Follows × Backscratchers]

Part 2: Additional Integrity Constraints

Express the following integrity constraints with the notation R = ∅, where R is an expression of
relational algebra.
You are welcome to define intermediate results with assignment and then use them in an integrity
constraint.

1. Each user can have at most one current story.

Solution:

σ(S1.uid=S2.uid)∧(S1.sid<S2.sid)∧(S1.current=S2.current=True)[ρS1Story × ρS2Story] = ∅

2. Every post must include at least one picture or one video and so must every story.

Solution:

(ΠpidPost − ΠpidPIncludes) ∪ (ρpid[ΠsidStory − ΠsidSincludes]) = ∅

Schema 2:

1. Find the clinic name and department name for all departments whose head is also head of

another department.

We join relation Department with itself on attribute dHead and select tuples with different

departmentIDs.

Answer:

𝜋 ℎ𝑁𝑎𝑚𝑒,𝑑𝑁𝑎𝑚𝑒((𝜎 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝐼𝐷 ≠𝑑𝐼𝐷(𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 ⋈

𝜌𝑑𝐼𝐷← 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝐼𝐷,ℎ𝐼𝐷 ←𝑐𝑙𝑖𝑛𝑖𝑐𝐼𝐷,𝑑𝑁← 𝑑𝑁𝑎𝑚𝑒 (𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡))) ⋈ 𝐶𝑙𝑖𝑛𝑖𝑐)

2. Find the first name and last name of all Physicians whose patients are never in the clinic for

less than 10 days.

(They must have had patients admitted in the clinic at some time.)

Answer:

First we find physicians who had some patients in clinic for less than 10 days:

𝑃ℎ𝑦𝑤𝑖𝑡ℎ𝑆𝑜𝑚𝑒𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 ∶=

𝜋𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 (𝜎𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛= 𝑝𝑟𝐼𝑛𝐷𝑎𝑡𝑒 < 10 (𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑅𝑜𝑜𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡))

Then we subtract the above physicians from the set of all physicians to get the ones who never

had a patient in clinic for less than 10 days:

5

𝑃ℎ𝑦𝑤𝑖𝑡ℎ𝑛𝑜𝑠𝑢𝑐ℎ𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠: =

𝜋𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 (𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑅𝑜𝑜𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡) − 𝑃ℎ𝑦𝑤𝑖𝑡ℎ𝑆𝑜𝑚𝑒𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠

Now we join the above relation with Employee to get the names:

𝜋𝑒𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒,𝑒𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒(ρ 𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛← 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝐼𝐷(Employee) ⋈ 𝑃ℎ𝑦𝑤𝑖𝑡ℎ𝑛𝑜𝑠𝑢𝑐ℎ𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠)

3. Find the first and last name of all patients who have exactly two physicians in the clinic’s

system.

(Note that physicians are specified in both appointments and room assignment.)

Answer:

First we create a temporary relation containing all the patients and their Physicians.

This information can be found in both 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑅𝑜𝑜𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 and 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡;

relations:

𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 ∶=

 𝜋 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝐼𝐷,𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛(𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑅𝑜𝑜𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡) ∪

 𝜌 𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 ← 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝐼𝐷(𝜋𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝐼𝐷, 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝐼𝐷

(𝜎𝑑𝑅𝑜𝑙𝑒=′𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛′ (𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ⋈ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡)))

We next find patients who have at least two Physicians:

𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑤𝑖𝑡ℎ𝑡𝑤𝑜𝑃ℎ𝑦 ∶= 𝜋𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝐼𝐷 (𝜎𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛≠𝑝𝐷

(𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 ⋈ 𝜌𝑝𝐷 ← 𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 (𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛)))

Now we find patients with at least three Physicians:

𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠𝑎𝑡𝑙𝑒𝑎𝑠𝑡𝑡ℎ𝑟𝑒𝑒𝑃ℎ𝑦 ∶= 𝜋 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝐼𝐷(𝜎 𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛≠𝑝𝐷1 ∧ 𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛≠𝑝𝐷2 ∧ 𝑝𝐷2≠𝑝𝐷1

(𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 ⋈ 𝜌𝑝𝐷1 ← 𝑝𝑟𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 (𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛)

⋈ 𝜌𝑝𝐷2 ← 𝑝𝑟𝐷𝑜𝑐𝑡𝑜𝑟 (𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛)))

Patients with exactly two physicians are those who are in 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑤𝑖𝑡ℎ𝑡𝑤𝑜𝑃ℎ𝑦 but not in

𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠𝑎𝑡𝑙𝑒𝑎𝑠𝑡𝑡ℎ𝑟𝑒𝑒𝑃ℎ𝑦:

𝐹𝑖𝑛𝑎𝑙 ≔ 𝜋 𝑝𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒,𝑝𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒

(𝑃 ⋈ (𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑤𝑖𝑡ℎ𝑡𝑤𝑜𝑃ℎ𝑦 – 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠𝑎𝑡𝑙𝑒𝑎𝑠𝑡𝑡ℎ𝑟𝑒𝑒𝑃ℎ𝑦))

4. Find the clinic and department name for the department at which there were no appointments

from April 3, 2019 to April 8, 2019.

We first find departments which had some appointments between April 3, 2019 to April 8, 2019.

𝑆𝑜𝑚𝑒𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡𝑠 ∶ =

𝜋𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝐼𝐷 (𝜎 𝑝𝑎𝐷𝑎𝑡𝑒 >’2019−04−02’∧ 𝑝𝑎𝐷𝑎𝑡𝑒 < ’2019−04−09’(𝑃𝐴))

6

Departments with no appointment in that period can be found by subtracting

 𝑆𝑜𝑚𝑒𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡𝑠 from the set of all departments:

𝐹𝑖𝑛𝑎𝑙 ≔ 𝜋 ℎ𝑁𝑎𝑚𝑒,𝑑𝑁𝑎𝑚𝑒(𝐶𝑙𝑖𝑛𝑖𝑐 ⋈ 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 ⋈

(𝜋 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝐼𝐷(𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡) – 𝑆𝑜𝑚𝑒𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡𝑠))

5. Find the clinic, room number, and patient first and last names of all semi-private (size = 2)

rooms which were occupied by female patients who were over 50 on May 13, 2019.

We first select rooms of size 2:

𝑅𝑜𝑜𝑚𝑆𝑖𝑧𝑒2 ∶ = 𝜋𝑟𝑜𝑜𝑚𝐼𝐷 (𝜎𝑟𝑆𝑖𝑧𝑒 = 2 (𝑅𝑜𝑜𝑚))

Then we find rooms (and patients) in 𝑅𝑜𝑜𝑚𝑆𝑖𝑧𝑒2 in which there was a female patient on

May 13, 2019 with over 50 years of age:

𝑅𝑜𝑜𝑚𝐹𝑒𝑚𝑎𝑙𝑒𝑃𝑎𝑡𝑖𝑒𝑛𝑡50 ∶= 𝜋 𝑟𝑜𝑜𝑚𝐼𝐷,𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝐼𝐷

 (𝜎𝑝𝑟𝐼𝑛𝐷𝑎𝑡𝑒 < 2019−05−13 ∧ 𝑝𝑟𝑂𝑢𝑡𝐷𝑎𝑡𝑒 > 2019−05−13 ∧ 𝑝𝑆𝑒𝑥=′𝐹′∧ 𝑝𝐷𝑂𝐵 < 1969−08−13

 (𝑃𝑎𝑡𝑖𝑒𝑛𝑡 ⋈ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑅𝑜𝑜𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ⋈ 𝑅𝑜𝑜𝑚𝑆𝑖𝑧𝑒2))

Now we find names of the patients who occupied a room in 𝑅𝑜𝑜𝑚𝐹𝑒𝑚𝑎𝑙𝑒𝑃𝑎𝑡𝑖𝑒𝑛𝑡50:
𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 ≔ 𝜋 ℎ𝑁𝑎𝑚𝑒,𝑟𝑁𝑢𝑚𝑏𝑒𝑟,𝑝𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒,𝑝𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒

(𝐻 ⋈ 𝑅 ⋈ 𝑃 ⋈ 𝑅𝑜𝑜𝑚𝐹𝑒𝑚𝑎𝑙𝑒𝑃𝑎𝑡𝑖𝑒𝑛𝑡50))

