
CSCC43 UTSC

Tutorial Week 5 – Introduction to SQL

Part 1:

Schema
Student (sID, surName, firstName, campus, email, cgpa)

Course (dept, cNum, name, breadth)

Offering (oID, dept, cNum, term, instructor)

Took (sID, oID, grade)

Offering [dept, cNum] ⊆ Course [dept, cNum]

Took [sID] ⊆ Student [sID]

Took [oID] ⊆ Offering [oID]

Questions
Write a query for each of the following:

1. Answer each of the following questions with an arithmetic expression.

Suppose a row occurs n times in table R and m times in table S.

(a) Using bag semantics, how many times will it occur in table 𝑅 ∪ 𝑆?

(b) Using bag semantics, how many times will it occur in table 𝑅 ∩ 𝑆?

(c) Using bag semantics, how many times will it occur in table 𝑅 − 𝑆?

Solution:

(𝑎) 𝑛 + 𝑚

(𝑏) 𝑚𝑖𝑛(𝑛, 𝑚)

(𝑐) 𝑚𝑎𝑥(𝑛 − 𝑚, 0)

2. Use a set operation to find all terms when Jepson and Suzuki were both teaching.

Include every occurrence of a term from the result of both operands.

Output:

term

20089

20081

20081

(3 rows)

Solution
(SELECT Term FROM Offering WHERE instructor = 'Suzuki')
intersect all
(SELECT Term FROM Offering WHERE instructor = 'Jepson');

3. Find the sID of students who have earned a grade of 85 or more in some course, or

who have passed a course taught by Atwood.

Ensure that no sID occurs twice in the result.

Output:

 sid

 157

 98000

 99132

 99999

(4 rows)

Solution
(SELECT sid FROM took WHERE grade >= 85)

UNION

(SELECT sid

FROM Took, Offering

WHERE Took.oid = Offering.oid AND instructor = 'Atwood' AND grade >= 50)

4. Find all terms when csc369 was not offered.

Output:

term

 20081

 20089

(2 rows)

Solution

(SELECT term

FROM Offering)

EXCEPT

(SELECT term

FROM Offering

WHERE dept = 'csc' AND cNum = 369);

5. Make a table with two columns: oID and results.

In the results column, report either “high” (if that offering had an average grade of 80

or higher), or “low” (if that offering had an average under 60). Offerings with an

average in between will not be included.

Hints:

use a set operation.

You can use the SELECT clause to put a literal value into a column.

For example:

SELECT ‘high’ as results

Output:

oid | results

-----+---------

 38 | high

 14 | low

 8 | high

 7 | high

 3 | high

 28 | high

 13 | high

 39 | high

 15 | low

 1 | high

(10 rows)

Solution

(SELECT oID, 'high' AS results

FROM Took

GROUP BY oID

HAVING avg(grade) >=80)

UNION

(SELECT oID, 'low' as results

FROM Took

GROUP by oID

HAVING avg(grade) < 60);

Part 2:
1. Write a query to find the average grade, minimum grade, and maximum grade for each

offering.

Solution

SELECT oid, avg(grade), min(grade), max(grade)

FROM Took

GROUP BY oid;

Output:

 oid | avg | min | max

-----+---------------------+-----+-----

 31 | 78.0000000000000000 | 70 | 82

 34 | 60.6666666666666667 | 45 | 75

 . . . rows omitted

 8 | 92.0000000000000000 | 91 | 93

 11 | 79.0000000000000000 | 39 | 99

(23 rows)

2. Which of these queries is legal?

SELECT surname, sid

FROM Student, Took

WHERE Student.sid = Took.sid

GROUP BY sid;

SELECT surname, Student.sid

FROM Student, Took

WHERE Student.sid = Took.sid

GROUP BY campus;

Solution

SELECT instructor, max(grade),

count(Took.oid)

FROM Took, Offering

WHERE Took.oid = Offering.oid

GROUP BY instructor;

SELECT Course.dept, Course.cnum,

 count(oid), count(instructor)

FROM Course, Offering

WHERE Course.dept = Offering.dept and

 Course.cnum = Offering.cnum

GROUP BY Course.dept, Course.cnum

ORDER BY count(oid);

ERROR: column reference "sid"

is ambiguous

LINE 1: SELECT surname, sid

 ^

ERROR: column reference "sid" is ambiguous

LINE 1: LINE 1: SELECT surname, Student.sid
 ^

instructor | max | count

------------+-----+-------

 Jepson | 89 | 5

 Heap | 82 | 1

 . . .

 Mendel | 75 | 3

(17 rows)

 dept | cnum | count | count

------+------+-------+-------

 ENV | 320 | 1 | 1

 CSC | 369 | 1 | 1

 . . .

 CSC | 343 | 5 | 5

(18 rows)

3. Find the sid and minimum grade of each student with an average over 80.

Solution

SELECT SID, min(grade)

FROM Took

GROUP BY sID

HAVING AVG(grade) > 80;

Output:
 sid | min

-------+-----

 98000 | 54

 99999 | 52

(2 rows)

4. Find the sid, surname, and average grade of each student, but keep the data only for

those students who have taken at least 10 courses.

Solution

SELECT Student.sID, surname, avg(grade)

FROM Student, Took

WHERE Student.sID = Took.sID

GROUP BY Student.sID

HAVING count(grade) >= 10;

Output:
 sid | surname | avg

-------+------------+---------------------

 157 | Lakemeyer | 75.9333333333333333

 99999 | Ali | 84.5833333333333333

 98000 | Fairgrieve | 83.2000000000000000

(3 rows)

5. For each student who has passed at least 10 courses, report their sid and average grade

on the courses that they passed.

Solution

SELECT sid, AVG(grade)

FROM took

WHERE grade >= 50

GROUP BY sid

HAVING count(*) >= 10;

Output:
 sid | avg

-------+---------------------

 98000 | 83.2000000000000000

 99999 | 84.5833333333333333

 157 | 78.5714285714285714

(3 rows)

There is a lot going on here. Be sure you are clear on the difference between WHERE

and HAVING, and which rows are left at the moment where the HAVING condition is

checked for each group.

6. For each student who has passed at least 10 courses, report their sid and average

grade on all of their courses.

Solution:

Here, because we don’t want a filter applied (only passing grades count) when choosing

which students to report on, but we don’t want that filter applied when we compute their

average grade. A single query, with a single WHERE clause, can’t accomplish this. Views

to the rescue!

CREATE VIEW Seniors AS

SELECT sid

FROM Took

WHERE grade >= 50

GROUP BY sid

HAVING count(*) >= 10;

SELECT Seniors.sid, AVG(grade)

FROM Seniors, Took

WHERE seniors.sid = Took.sid

GROUP BY Seniors.sid;

Output:
 sid | avg

-------+---------------------

 98000 | 83.2000000000000000

 99999 | 84.5833333333333333

 157 | 75.9333333333333333

(3 rows)

7. Which of these queries is legal?

SELECT dept

FROM Took, Offering

WHERE Took.oID = Offering.oID

GROUP BY dept

HAVING avg(grade) > 75;

SELECT Took.oID, dept, cNum,

 avg(grade)

FROM Took, Offering

WHERE Took.oID = Offering.oID

GROUP BY Took.oID

HAVING avg(grade) > 75;

SELECT Took.oID, avg(grade)

FROM Took, Offering

WHERE Took.oID = Offering.oID

GROUP BY Took.oID

HAVING avg(grade) > 75;

SELECT oID, avg(grade)

FROM Took

GROUP BY sID

HAVING avg(grade) > 75;

Solution:

Here’s the result of each:

dept

 HIS

 CSC

 EEB

 ANT

(4 rows)

oid | avg

-----+---------------------

 31 | 78.0000000000000000

 3 | 82.0000000000000000

 28 | 91.0000000000000000

 13 | 95.6666666666666667

 9 | 78.0000000000000000

 7 | 83.0000000000000000

 1 | 87.2500000000000000

 38 | 92.0000000000000000

 39 | 97.0000000000000000

 11 | 79.0000000000000000

 8 | 92.0000000000000000

 (11 rows)

ERROR: column "offering.dept"

must appear in the GROUP BY

clause or be used in an

aggregate function

LINE 1: SELECT Took.oID, dept,

cNum, avg(grade)

ERROR: column "took.oid" must

appear

in the GROUP BY clause or be

used in an

aggregate function

LINE 1: SELECT oID, avg(grade)

