
CSCC43 UTSC

Tutorial Week 6 – Joins and Subqueries

Schema
Student (sID, surName, firstName, campus, email, cgpa)

Course (dept, cNum, name, breadth)

Offering (oID, dept, cNum, term, instructor)

Took (sID, oID, grade)

Offering [dept, cNum] ⊆ Course [dept, cNum]

Took [sID] ⊆ Student [sID]

Took [oID] ⊆ Offering [oID]

Part 1: Joins

Questions

1. Which of these queries is legal?

(a) SELECT count(distinct dept), count(distinct instructor)

 FROM Offering

 WHERE term >= 20089;

(b) SELECT distinct dept, distinct instructor

 FROM Offering

 WHERE term >= 20089;

(c) SELECT distinct dept, instructor

 FROM Offering

 WHERE term >= 20089;

Solution:

a) Legal, and here is the result:

 count | count

-------+-------

 6 | 16

(1 row)

b) ERROR: syntax error at or near "distinct"

LINE 1: SELECT distinct dept, distinct instructor

c)

 dept | instructor

------+------------

 EEB | Johancsik

 ENG | Percy

 CSC | Truta

 HIS | Young

 CSC | Horton

 ENG | Reisman

 CSC | Chechik

 CSC | Gries

 ENG | Atwood

 ENV | Suzuki

 ANT | Zorich

 HIS | Dow

 CSC | Craig

 CSC | Jepson

 CSC | Heap

 ANT | Davies

(16 ows)

2. Under what conditions could these two queries give different results? If that is not possible,

explain why.

SELECT surName, campus

FROM Student;

SELECT distinct surName, campus

FROM Student;

Solution:

If there were two students on the same campus with the same surname, their surname and
campus
would be repeated in the result of the first query, but not in the result of the second.

3. For each student who has taken a course, report their sid and the number of different

departments they have taken a course in.

Solution:

SELECT sid, count(distinct dept)

FROM Took JOIN Offering ON Took.oid = Offering.oid

GROUP BY sid;

 sid | count

-------+-------

 157 | 5

 11111 | 3

 98000 | 6

 99132 | 4

 99999 | 5

(5 rows)

The ‘distinct’ is necessary, otherwise every course the student has taken (unless it had a ‘NULL’
value for ‘dept’) would count, even if they were all in the same department!

SELECT sid, count(dept)

FROM Took JOIN Offering ON Took.oid = Offering.oid

GROUP BY sid;

 sid | count

-------+-------

 98000 | 15

 99132 | 7

 11111 | 5

 99999 | 12

 157 | 15

(5 rows)

4. Suppose we have two tables with content as follows:

(a) What query could produce this result?

SELECT * FROM One NATURAL RIGHT JOIN Two;

But note that PostgreSQL changes the column order on this query, actually producing:

 b | a | c

-----+---+-----

 2 | 1 | 3

 2 | 1 | 4

 2 | 1 | 5

 20 | | 21

 100 | | 101

(5 rows)

This would also provide the same rows, although in different column order:

SELECT * FROM Two NATURAL LEFT JOIN One;

 a | b | c

---+-----+-----

 1 | 2 | 3

 1 | 2 | 4

 1 | 2 | 5

 | 20 | 21

 | 100 | 101

(5 rows)

SELECT *

FROM One;

 a | b

----+-----

 1 | 2

 6 | 12

 | 100

 20 |

(4 rows)

SELECT *

FROM Two;

 b | c

-----+-----

 2 | 3

 100 | 101

 20 | 21

 2 | 4

 2 | 5

(5 rows)

(b) What query could produce this result?

SELECT * FROM One NATURAL LEFT JOIN Two;

But note that postgreSQL changes the column order on this query, actually producing:

 b | a | c

-----+----+-----

 2 | 1 | 3

 2 | 1 | 4

 2 | 1 | 5

 12 | 6 |

 100 | | 101

 | 20|

(6 rows)

This would also provide the same rows, although in different column order:

SELECT * FROM Two NATURAL RIGHT JOIN One;

 a | b | c

----+-----+-----

 1 | 2 | 3

 1 | 2 | 4

 1 | 2 | 5

 6 | 12 |

 | 100 | 101

 20 | |

(6 rows)

Part 1: Subqueries

Questions

1. What does this query do? (Recall that the || operator concatenates two strings.)

SELECT sid, dept || cnum as course, grade

FROM Took,

(SELECT *

 FROM Offering

 WHERE instructor = 'Horton') Hoffering

WHERE Took.oid = Hoffering.oid;

Solution: It finds information about students who took an offering taught by Horton.
On our dataset, this is the output:

 sid | course | grade

-------+--------+-------

 99132 | CSC343 | 79

 98000 | CSC343 | 82

 98000 | CSC263 | 78

 99999 | CSC343 | 89

 157 | CSC343 | 99

(5 rows)

2. What does this query do?

SELECT sid, surname

FROM Student

WHERE cgpa >

(SELECT cgpa

FROM Student

WHERE sid = 99999);

Solution: It finds information about students whose cgpa is higher than student 99999. On
On our dataset, this is the output:

 sid | surname

-------+------------

 99132 | Marchmount

 98000 | Fairgrieve

 157 | Lakemeyer

(3 rows)

3. What does this query do?
SELECT sid, dept || cnum AS course, grade

FROM Took JOIN Offering ON Took.oid = Offering.oid

WHERE

grade >= 80 AND

(cnum, dept) IN (

SELECT cnum, dept

FROM Took JOIN Offering ON Took.oid = Offering.oid

JOIN Student ON Took.sid = Student.sid

WHERE surname = 'Lakemeyer');

Solution: It finds information about students got an 80 or higher in a course that some
Lakemeyer took. They did not have to take the course together.

4. (a) Suppose we have these relations: R(a, b) and S(b, c). What does this query do?

SELECT a

FROM R

WHERE b in (SELECT b FROM S);

Solution: It finds a values from R whose b occurs in S.

(b) Can we express this query without using subqueries?

Solution: You might think this query is equivalent:
SELECT a

FROM R, S

WHERE R.b = S.b

(Or we could do a natural join.) But they are not the same in all cases. If a tuple from R connects
successfully with more than one tuple from S, this new query will yield duplicates that the
original did not.

5. What does this query do?

SELECT instructor

FROM Offering Off1

WHERE NOT EXISTS (

SELECT *

FROM Offering

WHERE

oid <> Off1.oid AND

instructor = Off1.instructor);

Solution: It finds instructors who have exactly one offering. On our dataset, this is the
output:

 instructor

 Truta

 Heap

 Chechik

 Davies

 Johancsik

 Reisman

 Dow

 Arv

 Miller

 Mendel

 Richler

(11 rows)

6. What does this query do?

SELECT DISTINCT oid

FROM Took

WHERE EXISTS (

SELECT *

FROM Took t, Offering o

WHERE

t.oid = o.oid AND

t.oid <> Took.oid AND

o.dept = 'CSC' AND

took.sid = t.sid)

ORDER BY oid;

Solution: It finds course offerings that include a student who has taken something else that is
a CSC course. On our dataset, this is the output:
oid

1

3

5

6

7

8

9

11

13

14

15

16

17

21

22

26

27

28

31

34

35

38

39

(23 ows)

7. Now let us write some queries! For each course, that is, each department and course number
combination, find the instructor who has taught the most offerings of it. If there are ties, include
them all.
Report the course (eg “csc343”), instructor and the number of offerings of the course by that
instructor.

(a) First, create a view called Counts to hold, for each course, and each instructor who has
taught it, their number of offerings.

CREATE VIEW Counts AS

SELECT (dept || cNum) AS course, instructor, count(*) AS count

FROM Offering

GROUP BY (dept || cNum), instructor;

(b) Now solve the problem. Do not use any joins. (This will force you to use a subquery.)

SELECT course, instructor

FROM Counts

WHERE (course, count)

IN (

 SELECT course, max(count)

 FROM Counts

 GROUP BY course

);

DROP VIEW Counts;

8. Use EXISTS to find the surname and email address of students who have never taken a

CSC course.

SELECT sid

FROM Student s

WHERE NOT EXISTS (

 SELECT *

 FROM Took t, Offering o

 WHERE t.oid = o.oid

 AND o.dept = 'CSC'

 AND s.sid = t.sid

);

9. Use EXISTS to find every instructor who has given a grade of 100.

SELECT DISTINCT o.instructor

FROM Offering o

WHERE EXISTS (

 SELECT *

 FROM Took t

 WHERE t.oid = o.oid

 AND grade = 100

);

10. Let's say that a course has level “junior” if its cNum is between 100 and 299 inclusive and has

level “senior" if its cNum is between 300 and 499 inclusive. Report the average grade, across
all departments and course offerings, for all junior courses and for all senior courses. Report
your answer in a table that looks like this:

 level | levelavg

---------|-----------

 junior |

 senior |

Each average should be an average of the individual student grades, not an average of the
course averages.

CREATE VIEW LevelAverages AS

(

 SELECT 'junior' AS level, AVG(t.grade) AS grade

 FROM Took t, Offering o

 WHERE t.oid = o.oid

 AND o.cNum >= 100

 AND o.cNum < 300

 GROUP BY t.oid

)

UNION ALL

(

 SELECT 'senior' AS level, AVG(t.grade) AS grade

 FROM Took t, Offering o

 WHERE t.oid = o.oid

 AND o.cNum >= 300

 AND o.cNum < 500

 GROUP BY t.oid

);

SELECT level, AVG(grade)

FROM LevelAverages

GROUP BY level;

DROP VIEW LevelAverages;

